Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc . (Contributed by NM, 9-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsucb | |- ( A e. On <-> suc A e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 2 | sucexb | |- ( A e. _V <-> suc A e. _V ) |
|
| 3 | 1 2 | anbi12i | |- ( ( Ord A /\ A e. _V ) <-> ( Ord suc A /\ suc A e. _V ) ) |
| 4 | elon2 | |- ( A e. On <-> ( Ord A /\ A e. _V ) ) |
|
| 5 | elon2 | |- ( suc A e. On <-> ( Ord suc A /\ suc A e. _V ) ) |
|
| 6 | 3 4 5 | 3bitr4i | |- ( A e. On <-> suc A e. On ) |