| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eloni |  |-  ( x e. On -> Ord x ) | 
						
							| 2 |  | ordelsuc |  |-  ( ( A e. On /\ Ord x ) -> ( A e. x <-> suc A C_ x ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. On /\ x e. On ) -> ( A e. x <-> suc A C_ x ) ) | 
						
							| 4 | 3 | rabbidva |  |-  ( A e. On -> { x e. On | A e. x } = { x e. On | suc A C_ x } ) | 
						
							| 5 | 4 | inteqd |  |-  ( A e. On -> |^| { x e. On | A e. x } = |^| { x e. On | suc A C_ x } ) | 
						
							| 6 |  | onsucb |  |-  ( A e. On <-> suc A e. On ) | 
						
							| 7 |  | intmin |  |-  ( suc A e. On -> |^| { x e. On | suc A C_ x } = suc A ) | 
						
							| 8 | 6 7 | sylbi |  |-  ( A e. On -> |^| { x e. On | suc A C_ x } = suc A ) | 
						
							| 9 | 5 8 | eqtr2d |  |-  ( A e. On -> suc A = |^| { x e. On | A e. x } ) |