Metamath Proof Explorer


Theorem onsucssi

Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 16-Sep-1995)

Ref Expression
Hypotheses onssi.1
|- A e. On
onsucssi.2
|- B e. On
Assertion onsucssi
|- ( A e. B <-> suc A C_ B )

Proof

Step Hyp Ref Expression
1 onssi.1
 |-  A e. On
2 onsucssi.2
 |-  B e. On
3 2 onordi
 |-  Ord B
4 ordelsuc
 |-  ( ( A e. On /\ Ord B ) -> ( A e. B <-> suc A C_ B ) )
5 1 3 4 mp2an
 |-  ( A e. B <-> suc A C_ B )