Metamath Proof Explorer


Theorem onsucuni

Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of TakeutiZaring p. 41. (Contributed by NM, 19-Sep-2003)

Ref Expression
Assertion onsucuni
|- ( A C_ On -> A C_ suc U. A )

Proof

Step Hyp Ref Expression
1 ssorduni
 |-  ( A C_ On -> Ord U. A )
2 ssid
 |-  U. A C_ U. A
3 ordunisssuc
 |-  ( ( A C_ On /\ Ord U. A ) -> ( U. A C_ U. A <-> A C_ suc U. A ) )
4 2 3 mpbii
 |-  ( ( A C_ On /\ Ord U. A ) -> A C_ suc U. A )
5 1 4 mpdan
 |-  ( A C_ On -> A C_ suc U. A )