Description: A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of TakeutiZaring p. 41. (Contributed by NM, 19-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onsucuni | |- ( A C_ On -> A C_ suc U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssorduni | |- ( A C_ On -> Ord U. A ) |
|
2 | ssid | |- U. A C_ U. A |
|
3 | ordunisssuc | |- ( ( A C_ On /\ Ord U. A ) -> ( U. A C_ U. A <-> A C_ suc U. A ) ) |
|
4 | 2 3 | mpbii | |- ( ( A C_ On /\ Ord U. A ) -> A C_ suc U. A ) |
5 | 1 4 | mpdan | |- ( A C_ On -> A C_ suc U. A ) |