| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssequn1 |  |-  ( A C_ B <-> ( A u. B ) = B ) | 
						
							| 2 |  | eleq1a |  |-  ( B e. On -> ( ( A u. B ) = B -> ( A u. B ) e. On ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. On /\ B e. On ) -> ( ( A u. B ) = B -> ( A u. B ) e. On ) ) | 
						
							| 4 | 1 3 | biimtrid |  |-  ( ( A e. On /\ B e. On ) -> ( A C_ B -> ( A u. B ) e. On ) ) | 
						
							| 5 |  | ssequn2 |  |-  ( B C_ A <-> ( A u. B ) = A ) | 
						
							| 6 |  | eleq1a |  |-  ( A e. On -> ( ( A u. B ) = A -> ( A u. B ) e. On ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( ( A u. B ) = A -> ( A u. B ) e. On ) ) | 
						
							| 8 | 5 7 | biimtrid |  |-  ( ( A e. On /\ B e. On ) -> ( B C_ A -> ( A u. B ) e. On ) ) | 
						
							| 9 |  | eloni |  |-  ( A e. On -> Ord A ) | 
						
							| 10 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 11 |  | ordtri2or2 |  |-  ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) | 
						
							| 12 | 9 10 11 | syl2an |  |-  ( ( A e. On /\ B e. On ) -> ( A C_ B \/ B C_ A ) ) | 
						
							| 13 | 4 8 12 | mpjaod |  |-  ( ( A e. On /\ B e. On ) -> ( A u. B ) e. On ) |