Metamath Proof Explorer


Theorem onun2i

Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994)

Ref Expression
Hypotheses on.1
|- A e. On
on.2
|- B e. On
Assertion onun2i
|- ( A u. B ) e. On

Proof

Step Hyp Ref Expression
1 on.1
 |-  A e. On
2 on.2
 |-  B e. On
3 onun2
 |-  ( ( A e. On /\ B e. On ) -> ( A u. B ) e. On )
4 1 2 3 mp2an
 |-  ( A u. B ) e. On