| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssequn1 |
|- ( A C_ B <-> ( A u. B ) = B ) |
| 2 |
1
|
biimpi |
|- ( A C_ B -> ( A u. B ) = B ) |
| 3 |
2
|
eleq1d |
|- ( A C_ B -> ( ( A u. B ) e. C <-> B e. C ) ) |
| 4 |
3
|
adantl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( ( A u. B ) e. C <-> B e. C ) ) |
| 5 |
|
ontr2 |
|- ( ( A e. On /\ C e. On ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |
| 6 |
5
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |
| 7 |
6
|
expdimp |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( B e. C -> A e. C ) ) |
| 8 |
7
|
pm4.71rd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( B e. C <-> ( A e. C /\ B e. C ) ) ) |
| 9 |
4 8
|
bitrd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |
| 10 |
|
ssequn2 |
|- ( B C_ A <-> ( A u. B ) = A ) |
| 11 |
10
|
biimpi |
|- ( B C_ A -> ( A u. B ) = A ) |
| 12 |
11
|
eleq1d |
|- ( B C_ A -> ( ( A u. B ) e. C <-> A e. C ) ) |
| 13 |
12
|
adantl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( ( A u. B ) e. C <-> A e. C ) ) |
| 14 |
|
ontr2 |
|- ( ( B e. On /\ C e. On ) -> ( ( B C_ A /\ A e. C ) -> B e. C ) ) |
| 15 |
14
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( B C_ A /\ A e. C ) -> B e. C ) ) |
| 16 |
15
|
expdimp |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( A e. C -> B e. C ) ) |
| 17 |
16
|
pm4.71d |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( A e. C <-> ( A e. C /\ B e. C ) ) ) |
| 18 |
13 17
|
bitrd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |
| 19 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 20 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 21 |
|
ordtri2or2 |
|- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) |
| 22 |
19 20 21
|
syl2an |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B \/ B C_ A ) ) |
| 23 |
22
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B \/ B C_ A ) ) |
| 24 |
9 18 23
|
mpjaodan |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |