Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onssi.1 | |- A e. On |
|
Assertion | onuniorsuci | |- ( A = U. A \/ A = suc U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | |- A e. On |
|
2 | 1 | onordi | |- Ord A |
3 | orduniorsuc | |- ( Ord A -> ( A = U. A \/ A = suc U. A ) ) |
|
4 | 2 3 | ax-mp | |- ( A = U. A \/ A = suc U. A ) |