Metamath Proof Explorer


Theorem onuniorsuci

Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994)

Ref Expression
Hypothesis onssi.1
|- A e. On
Assertion onuniorsuci
|- ( A = U. A \/ A = suc U. A )

Proof

Step Hyp Ref Expression
1 onssi.1
 |-  A e. On
2 1 onordi
 |-  Ord A
3 orduniorsuc
 |-  ( Ord A -> ( A = U. A \/ A = suc U. A ) )
4 2 3 ax-mp
 |-  ( A = U. A \/ A = suc U. A )