Metamath Proof Explorer


Theorem onuniorsuciOLD

Description: Obsolete version of onuniorsuc as of 11-Jan-2025. (Contributed by NM, 13-Jun-1994) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis onssi.1
|- A e. On
Assertion onuniorsuciOLD
|- ( A = U. A \/ A = suc U. A )

Proof

Step Hyp Ref Expression
1 onssi.1
 |-  A e. On
2 onuniorsuc
 |-  ( A e. On -> ( A = U. A \/ A = suc U. A ) )
3 1 2 ax-mp
 |-  ( A = U. A \/ A = suc U. A )