Description: The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onwf | |- On C_ U. ( R1 " On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r1fnon | |- R1 Fn On | |
| 2 | 1 | fndmi | |- dom R1 = On | 
| 3 | rankonidlem | |- ( x e. dom R1 -> ( x e. U. ( R1 " On ) /\ ( rank ` x ) = x ) ) | |
| 4 | 3 | simpld | |- ( x e. dom R1 -> x e. U. ( R1 " On ) ) | 
| 5 | 4 | ssriv | |- dom R1 C_ U. ( R1 " On ) | 
| 6 | 2 5 | eqsstrri | |- On C_ U. ( R1 " On ) |