Description: The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | onwf | |- On C_ U. ( R1 " On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon | |- R1 Fn On |
|
2 | 1 | fndmi | |- dom R1 = On |
3 | rankonidlem | |- ( x e. dom R1 -> ( x e. U. ( R1 " On ) /\ ( rank ` x ) = x ) ) |
|
4 | 3 | simpld | |- ( x e. dom R1 -> x e. U. ( R1 " On ) ) |
5 | 4 | ssriv | |- dom R1 C_ U. ( R1 " On ) |
6 | 2 5 | eqsstrri | |- On C_ U. ( R1 " On ) |