| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disj |  |-  ( ( On i^i ( _V X. _V ) ) = (/) <-> A. x e. On -. x e. ( _V X. _V ) ) | 
						
							| 2 |  | on0eqel |  |-  ( x e. On -> ( x = (/) \/ (/) e. x ) ) | 
						
							| 3 |  | 0nelxp |  |-  -. (/) e. ( _V X. _V ) | 
						
							| 4 |  | eleq1 |  |-  ( x = (/) -> ( x e. ( _V X. _V ) <-> (/) e. ( _V X. _V ) ) ) | 
						
							| 5 | 3 4 | mtbiri |  |-  ( x = (/) -> -. x e. ( _V X. _V ) ) | 
						
							| 6 |  | 0nelelxp |  |-  ( x e. ( _V X. _V ) -> -. (/) e. x ) | 
						
							| 7 | 6 | con2i |  |-  ( (/) e. x -> -. x e. ( _V X. _V ) ) | 
						
							| 8 | 5 7 | jaoi |  |-  ( ( x = (/) \/ (/) e. x ) -> -. x e. ( _V X. _V ) ) | 
						
							| 9 | 2 8 | syl |  |-  ( x e. On -> -. x e. ( _V X. _V ) ) | 
						
							| 10 | 1 9 | mprgbir |  |-  ( On i^i ( _V X. _V ) ) = (/) |