| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. On -> A e. _V ) |
| 2 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 3 |
|
ordzsl |
|- ( Ord A <-> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
| 4 |
|
3mix1 |
|- ( A = (/) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 5 |
4
|
adantl |
|- ( ( A e. _V /\ A = (/) ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 6 |
|
3mix2 |
|- ( E. x e. On A = suc x -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 7 |
6
|
adantl |
|- ( ( A e. _V /\ E. x e. On A = suc x ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 8 |
|
3mix3 |
|- ( ( A e. _V /\ Lim A ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 9 |
5 7 8
|
3jaodan |
|- ( ( A e. _V /\ ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 10 |
3 9
|
sylan2b |
|- ( ( A e. _V /\ Ord A ) -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 11 |
1 2 10
|
syl2anc |
|- ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
| 12 |
|
0elon |
|- (/) e. On |
| 13 |
|
eleq1 |
|- ( A = (/) -> ( A e. On <-> (/) e. On ) ) |
| 14 |
12 13
|
mpbiri |
|- ( A = (/) -> A e. On ) |
| 15 |
|
onsuc |
|- ( x e. On -> suc x e. On ) |
| 16 |
|
eleq1 |
|- ( A = suc x -> ( A e. On <-> suc x e. On ) ) |
| 17 |
15 16
|
syl5ibrcom |
|- ( x e. On -> ( A = suc x -> A e. On ) ) |
| 18 |
17
|
rexlimiv |
|- ( E. x e. On A = suc x -> A e. On ) |
| 19 |
|
limelon |
|- ( ( A e. _V /\ Lim A ) -> A e. On ) |
| 20 |
14 18 19
|
3jaoi |
|- ( ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) -> A e. On ) |
| 21 |
11 20
|
impbii |
|- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |