Step |
Hyp |
Ref |
Expression |
1 |
|
op01dm.b |
|- B = ( Base ` K ) |
2 |
|
op01dm.u |
|- U = ( lub ` K ) |
3 |
|
op01dm.g |
|- G = ( glb ` K ) |
4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
5 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
8 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
9 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
10 |
1 2 3 4 5 6 7 8 9
|
isopos |
|- ( K e. OP <-> ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ( oc ` K ) ` x ) e. B /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) ) |
11 |
|
simpl |
|- ( ( ( B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ( oc ` K ) ` x ) e. B /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) -> ( B e. dom U /\ B e. dom G ) ) |
12 |
11
|
3adantl1 |
|- ( ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ( oc ` K ) ` x ) e. B /\ ( ( oc ` K ) ` ( ( oc ` K ) ` x ) ) = x /\ ( x ( le ` K ) y -> ( ( oc ` K ) ` y ) ( le ` K ) ( ( oc ` K ) ` x ) ) ) /\ ( x ( join ` K ) ( ( oc ` K ) ` x ) ) = ( 1. ` K ) /\ ( x ( meet ` K ) ( ( oc ` K ) ` x ) ) = ( 0. ` K ) ) ) -> ( B e. dom U /\ B e. dom G ) ) |
13 |
10 12
|
sylbi |
|- ( K e. OP -> ( B e. dom U /\ B e. dom G ) ) |