Description: An orthoposet has a zero element. ( h0elch analog.) (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | op0cl.b | |- B = ( Base ` K ) |
|
| op0cl.z | |- .0. = ( 0. ` K ) |
||
| Assertion | op0cl | |- ( K e. OP -> .0. e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op0cl.b | |- B = ( Base ` K ) |
|
| 2 | op0cl.z | |- .0. = ( 0. ` K ) |
|
| 3 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 4 | 1 3 2 | p0val | |- ( K e. OP -> .0. = ( ( glb ` K ) ` B ) ) |
| 5 | id | |- ( K e. OP -> K e. OP ) |
|
| 6 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
| 7 | 1 6 3 | op01dm | |- ( K e. OP -> ( B e. dom ( lub ` K ) /\ B e. dom ( glb ` K ) ) ) |
| 8 | 7 | simprd | |- ( K e. OP -> B e. dom ( glb ` K ) ) |
| 9 | 1 3 5 8 | glbcl | |- ( K e. OP -> ( ( glb ` K ) ` B ) e. B ) |
| 10 | 4 9 | eqeltrd | |- ( K e. OP -> .0. e. B ) |