Metamath Proof Explorer


Theorem op0cl

Description: An orthoposet has a zero element. ( h0elch analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses op0cl.b
|- B = ( Base ` K )
op0cl.z
|- .0. = ( 0. ` K )
Assertion op0cl
|- ( K e. OP -> .0. e. B )

Proof

Step Hyp Ref Expression
1 op0cl.b
 |-  B = ( Base ` K )
2 op0cl.z
 |-  .0. = ( 0. ` K )
3 eqid
 |-  ( glb ` K ) = ( glb ` K )
4 1 3 2 p0val
 |-  ( K e. OP -> .0. = ( ( glb ` K ) ` B ) )
5 id
 |-  ( K e. OP -> K e. OP )
6 eqid
 |-  ( lub ` K ) = ( lub ` K )
7 1 6 3 op01dm
 |-  ( K e. OP -> ( B e. dom ( lub ` K ) /\ B e. dom ( glb ` K ) ) )
8 7 simprd
 |-  ( K e. OP -> B e. dom ( glb ` K ) )
9 1 3 5 8 glbcl
 |-  ( K e. OP -> ( ( glb ` K ) ` B ) e. B )
10 4 9 eqeltrd
 |-  ( K e. OP -> .0. e. B )