| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ople1.b |
|- B = ( Base ` K ) |
| 2 |
|
ople1.l |
|- .<_ = ( le ` K ) |
| 3 |
|
ople1.u |
|- .1. = ( 1. ` K ) |
| 4 |
1 2 3
|
ople1 |
|- ( ( K e. OP /\ X e. B ) -> X .<_ .1. ) |
| 5 |
4
|
biantrurd |
|- ( ( K e. OP /\ X e. B ) -> ( .1. .<_ X <-> ( X .<_ .1. /\ .1. .<_ X ) ) ) |
| 6 |
|
opposet |
|- ( K e. OP -> K e. Poset ) |
| 7 |
6
|
adantr |
|- ( ( K e. OP /\ X e. B ) -> K e. Poset ) |
| 8 |
|
simpr |
|- ( ( K e. OP /\ X e. B ) -> X e. B ) |
| 9 |
1 3
|
op1cl |
|- ( K e. OP -> .1. e. B ) |
| 10 |
9
|
adantr |
|- ( ( K e. OP /\ X e. B ) -> .1. e. B ) |
| 11 |
1 2
|
posasymb |
|- ( ( K e. Poset /\ X e. B /\ .1. e. B ) -> ( ( X .<_ .1. /\ .1. .<_ X ) <-> X = .1. ) ) |
| 12 |
7 8 10 11
|
syl3anc |
|- ( ( K e. OP /\ X e. B ) -> ( ( X .<_ .1. /\ .1. .<_ X ) <-> X = .1. ) ) |
| 13 |
5 12
|
bitrd |
|- ( ( K e. OP /\ X e. B ) -> ( .1. .<_ X <-> X = .1. ) ) |