Metamath Proof Explorer


Theorem op1st

Description: Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004)

Ref Expression
Hypotheses op1st.1
|- A e. _V
op1st.2
|- B e. _V
Assertion op1st
|- ( 1st ` <. A , B >. ) = A

Proof

Step Hyp Ref Expression
1 op1st.1
 |-  A e. _V
2 op1st.2
 |-  B e. _V
3 1stval
 |-  ( 1st ` <. A , B >. ) = U. dom { <. A , B >. }
4 1 2 op1sta
 |-  U. dom { <. A , B >. } = A
5 3 4 eqtri
 |-  ( 1st ` <. A , B >. ) = A