Description: Extract the first member of an ordered pair. (See op2nda to extract the second member, op1stb for an alternate version, and op1st for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnvsn.1 | |- A e. _V |
|
cnvsn.2 | |- B e. _V |
||
Assertion | op1sta | |- U. dom { <. A , B >. } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | |- A e. _V |
|
2 | cnvsn.2 | |- B e. _V |
|
3 | 2 | dmsnop | |- dom { <. A , B >. } = { A } |
4 | 3 | unieqi | |- U. dom { <. A , B >. } = U. { A } |
5 | 1 | unisn | |- U. { A } = A |
6 | 4 5 | eqtri | |- U. dom { <. A , B >. } = A |