Metamath Proof Explorer


Theorem op1sta

Description: Extract the first member of an ordered pair. (See op2nda to extract the second member, op1stb for an alternate version, and op1st for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003)

Ref Expression
Hypotheses cnvsn.1
|- A e. _V
cnvsn.2
|- B e. _V
Assertion op1sta
|- U. dom { <. A , B >. } = A

Proof

Step Hyp Ref Expression
1 cnvsn.1
 |-  A e. _V
2 cnvsn.2
 |-  B e. _V
3 2 dmsnop
 |-  dom { <. A , B >. } = { A }
4 3 unieqi
 |-  U. dom { <. A , B >. } = U. { A }
5 1 unisn
 |-  U. { A } = A
6 4 5 eqtri
 |-  U. dom { <. A , B >. } = A