Metamath Proof Explorer


Theorem op2nd

Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004)

Ref Expression
Hypotheses op1st.1
|- A e. _V
op1st.2
|- B e. _V
Assertion op2nd
|- ( 2nd ` <. A , B >. ) = B

Proof

Step Hyp Ref Expression
1 op1st.1
 |-  A e. _V
2 op1st.2
 |-  B e. _V
3 2ndval
 |-  ( 2nd ` <. A , B >. ) = U. ran { <. A , B >. }
4 1 2 op2nda
 |-  U. ran { <. A , B >. } = B
5 3 4 eqtri
 |-  ( 2nd ` <. A , B >. ) = B