| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opeq1 |
|- ( x = A -> <. x , y >. = <. A , y >. ) |
| 2 |
1
|
fveqeq2d |
|- ( x = A -> ( ( 2nd ` <. x , y >. ) = y <-> ( 2nd ` <. A , y >. ) = y ) ) |
| 3 |
|
opeq2 |
|- ( y = B -> <. A , y >. = <. A , B >. ) |
| 4 |
3
|
fveq2d |
|- ( y = B -> ( 2nd ` <. A , y >. ) = ( 2nd ` <. A , B >. ) ) |
| 5 |
|
id |
|- ( y = B -> y = B ) |
| 6 |
4 5
|
eqeq12d |
|- ( y = B -> ( ( 2nd ` <. A , y >. ) = y <-> ( 2nd ` <. A , B >. ) = B ) ) |
| 7 |
|
vex |
|- x e. _V |
| 8 |
|
vex |
|- y e. _V |
| 9 |
7 8
|
op2nd |
|- ( 2nd ` <. x , y >. ) = y |
| 10 |
2 6 9
|
vtocl2g |
|- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |