Description: Deduce equality of a relation and an ordered-pair class abstraction. Compare eqabdv . (Contributed by NM, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabbi2dv.1 | |- Rel A | |
| opabbi2dv.3 | |- ( ph -> ( <. x , y >. e. A <-> ps ) ) | ||
| Assertion | opabbi2dv | |- ( ph -> A = { <. x , y >. | ps } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opabbi2dv.1 | |- Rel A | |
| 2 | opabbi2dv.3 | |- ( ph -> ( <. x , y >. e. A <-> ps ) ) | |
| 3 | opabid2 |  |-  ( Rel A -> { <. x , y >. | <. x , y >. e. A } = A ) | |
| 4 | 1 3 | ax-mp |  |-  { <. x , y >. | <. x , y >. e. A } = A | 
| 5 | 2 | opabbidv |  |-  ( ph -> { <. x , y >. | <. x , y >. e. A } = { <. x , y >. | ps } ) | 
| 6 | 4 5 | eqtr3id |  |-  ( ph -> A = { <. x , y >. | ps } ) |