| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opabbidv.1 |
|- ( ph -> ( ps <-> ch ) ) |
| 2 |
1
|
anbi2d |
|- ( ph -> ( ( z = <. x , y >. /\ ps ) <-> ( z = <. x , y >. /\ ch ) ) ) |
| 3 |
2
|
2exbidv |
|- ( ph -> ( E. x E. y ( z = <. x , y >. /\ ps ) <-> E. x E. y ( z = <. x , y >. /\ ch ) ) ) |
| 4 |
3
|
abbidv |
|- ( ph -> { z | E. x E. y ( z = <. x , y >. /\ ps ) } = { z | E. x E. y ( z = <. x , y >. /\ ch ) } ) |
| 5 |
|
df-opab |
|- { <. x , y >. | ps } = { z | E. x E. y ( z = <. x , y >. /\ ps ) } |
| 6 |
|
df-opab |
|- { <. x , y >. | ch } = { z | E. x E. y ( z = <. x , y >. /\ ch ) } |
| 7 |
4 5 6
|
3eqtr4g |
|- ( ph -> { <. x , y >. | ps } = { <. x , y >. | ch } ) |