Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opabbii.1 | |- ( ph <-> ps ) | |
| Assertion | opabbii | |- { <. x , y >. | ph } = { <. x , y >. | ps } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opabbii.1 | |- ( ph <-> ps ) | |
| 2 | eqid | |- z = z | |
| 3 | 1 | a1i | |- ( z = z -> ( ph <-> ps ) ) | 
| 4 | 3 | opabbidv |  |-  ( z = z -> { <. x , y >. | ph } = { <. x , y >. | ps } ) | 
| 5 | 2 4 | ax-mp |  |-  { <. x , y >. | ph } = { <. x , y >. | ps } |