Step |
Hyp |
Ref |
Expression |
1 |
|
opabex.1 |
|- A e. _V |
2 |
|
opabex.2 |
|- ( x e. A -> E* y ph ) |
3 |
|
funopab |
|- ( Fun { <. x , y >. | ( x e. A /\ ph ) } <-> A. x E* y ( x e. A /\ ph ) ) |
4 |
|
moanimv |
|- ( E* y ( x e. A /\ ph ) <-> ( x e. A -> E* y ph ) ) |
5 |
2 4
|
mpbir |
|- E* y ( x e. A /\ ph ) |
6 |
3 5
|
mpgbir |
|- Fun { <. x , y >. | ( x e. A /\ ph ) } |
7 |
|
dmopabss |
|- dom { <. x , y >. | ( x e. A /\ ph ) } C_ A |
8 |
1 7
|
ssexi |
|- dom { <. x , y >. | ( x e. A /\ ph ) } e. _V |
9 |
|
funex |
|- ( ( Fun { <. x , y >. | ( x e. A /\ ph ) } /\ dom { <. x , y >. | ( x e. A /\ ph ) } e. _V ) -> { <. x , y >. | ( x e. A /\ ph ) } e. _V ) |
10 |
6 8 9
|
mp2an |
|- { <. x , y >. | ( x e. A /\ ph ) } e. _V |