Metamath Proof Explorer


Theorem opabex

Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996)

Ref Expression
Hypotheses opabex.1
|- A e. _V
opabex.2
|- ( x e. A -> E* y ph )
Assertion opabex
|- { <. x , y >. | ( x e. A /\ ph ) } e. _V

Proof

Step Hyp Ref Expression
1 opabex.1
 |-  A e. _V
2 opabex.2
 |-  ( x e. A -> E* y ph )
3 funopab
 |-  ( Fun { <. x , y >. | ( x e. A /\ ph ) } <-> A. x E* y ( x e. A /\ ph ) )
4 moanimv
 |-  ( E* y ( x e. A /\ ph ) <-> ( x e. A -> E* y ph ) )
5 2 4 mpbir
 |-  E* y ( x e. A /\ ph )
6 3 5 mpgbir
 |-  Fun { <. x , y >. | ( x e. A /\ ph ) }
7 dmopabss
 |-  dom { <. x , y >. | ( x e. A /\ ph ) } C_ A
8 1 7 ssexi
 |-  dom { <. x , y >. | ( x e. A /\ ph ) } e. _V
9 funex
 |-  ( ( Fun { <. x , y >. | ( x e. A /\ ph ) } /\ dom { <. x , y >. | ( x e. A /\ ph ) } e. _V ) -> { <. x , y >. | ( x e. A /\ ph ) } e. _V )
10 6 8 9 mp2an
 |-  { <. x , y >. | ( x e. A /\ ph ) } e. _V