Metamath Proof Explorer


Theorem opabex2

Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Hypotheses opabex2.1
|- ( ph -> A e. V )
opabex2.2
|- ( ph -> B e. W )
opabex2.3
|- ( ( ph /\ ps ) -> x e. A )
opabex2.4
|- ( ( ph /\ ps ) -> y e. B )
Assertion opabex2
|- ( ph -> { <. x , y >. | ps } e. _V )

Proof

Step Hyp Ref Expression
1 opabex2.1
 |-  ( ph -> A e. V )
2 opabex2.2
 |-  ( ph -> B e. W )
3 opabex2.3
 |-  ( ( ph /\ ps ) -> x e. A )
4 opabex2.4
 |-  ( ( ph /\ ps ) -> y e. B )
5 1 2 xpexd
 |-  ( ph -> ( A X. B ) e. _V )
6 3 4 opabssxpd
 |-  ( ph -> { <. x , y >. | ps } C_ ( A X. B ) )
7 5 6 ssexd
 |-  ( ph -> { <. x , y >. | ps } e. _V )