Step |
Hyp |
Ref |
Expression |
1 |
|
opabiota.1 |
|- F = { <. x , y >. | { y | ph } = { y } } |
2 |
|
opabiota.2 |
|- ( x = B -> ( ph <-> ps ) ) |
3 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
4 |
2
|
iotabidv |
|- ( x = B -> ( iota y ph ) = ( iota y ps ) ) |
5 |
3 4
|
eqeq12d |
|- ( x = B -> ( ( F ` x ) = ( iota y ph ) <-> ( F ` B ) = ( iota y ps ) ) ) |
6 |
|
vex |
|- x e. _V |
7 |
6
|
eldm |
|- ( x e. dom F <-> E. y x F y ) |
8 |
|
nfiota1 |
|- F/_ y ( iota y ph ) |
9 |
8
|
nfeq2 |
|- F/ y ( F ` x ) = ( iota y ph ) |
10 |
1
|
opabiotafun |
|- Fun F |
11 |
|
funbrfv |
|- ( Fun F -> ( x F y -> ( F ` x ) = y ) ) |
12 |
10 11
|
ax-mp |
|- ( x F y -> ( F ` x ) = y ) |
13 |
|
df-br |
|- ( x F y <-> <. x , y >. e. F ) |
14 |
1
|
eleq2i |
|- ( <. x , y >. e. F <-> <. x , y >. e. { <. x , y >. | { y | ph } = { y } } ) |
15 |
|
opabidw |
|- ( <. x , y >. e. { <. x , y >. | { y | ph } = { y } } <-> { y | ph } = { y } ) |
16 |
13 14 15
|
3bitri |
|- ( x F y <-> { y | ph } = { y } ) |
17 |
|
vsnid |
|- y e. { y } |
18 |
|
id |
|- ( { y | ph } = { y } -> { y | ph } = { y } ) |
19 |
17 18
|
eleqtrrid |
|- ( { y | ph } = { y } -> y e. { y | ph } ) |
20 |
|
abid |
|- ( y e. { y | ph } <-> ph ) |
21 |
19 20
|
sylib |
|- ( { y | ph } = { y } -> ph ) |
22 |
16 21
|
sylbi |
|- ( x F y -> ph ) |
23 |
|
vex |
|- y e. _V |
24 |
6 23
|
breldm |
|- ( x F y -> x e. dom F ) |
25 |
1
|
opabiotadm |
|- dom F = { x | E! y ph } |
26 |
25
|
abeq2i |
|- ( x e. dom F <-> E! y ph ) |
27 |
24 26
|
sylib |
|- ( x F y -> E! y ph ) |
28 |
|
iota1 |
|- ( E! y ph -> ( ph <-> ( iota y ph ) = y ) ) |
29 |
27 28
|
syl |
|- ( x F y -> ( ph <-> ( iota y ph ) = y ) ) |
30 |
22 29
|
mpbid |
|- ( x F y -> ( iota y ph ) = y ) |
31 |
12 30
|
eqtr4d |
|- ( x F y -> ( F ` x ) = ( iota y ph ) ) |
32 |
9 31
|
exlimi |
|- ( E. y x F y -> ( F ` x ) = ( iota y ph ) ) |
33 |
7 32
|
sylbi |
|- ( x e. dom F -> ( F ` x ) = ( iota y ph ) ) |
34 |
5 33
|
vtoclga |
|- ( B e. dom F -> ( F ` B ) = ( iota y ps ) ) |