Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 16-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opabiota.1 | |- F = { <. x , y >. | { y | ph } = { y } } |
|
Assertion | opabiotadm | |- dom F = { x | E! y ph } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabiota.1 | |- F = { <. x , y >. | { y | ph } = { y } } |
|
2 | dmopab | |- dom { <. x , y >. | { y | ph } = { y } } = { x | E. y { y | ph } = { y } } |
|
3 | 1 | dmeqi | |- dom F = dom { <. x , y >. | { y | ph } = { y } } |
4 | euabsn | |- ( E! y ph <-> E. y { y | ph } = { y } ) |
|
5 | 4 | abbii | |- { x | E! y ph } = { x | E. y { y | ph } = { y } } |
6 | 2 3 5 | 3eqtr4i | |- dom F = { x | E! y ph } |