Metamath Proof Explorer


Theorem opabresex2

Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable conditions betweem W , G and x , y to remove hypotheses. (Revised by SN, 13-Dec-2024)

Ref Expression
Assertion opabresex2
|- { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( W ` G ) e. _V
2 elopabran
 |-  ( z e. { <. x , y >. | ( x ( W ` G ) y /\ th ) } -> z e. ( W ` G ) )
3 2 ssriv
 |-  { <. x , y >. | ( x ( W ` G ) y /\ th ) } C_ ( W ` G )
4 1 3 ssexi
 |-  { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V