Description: Obsolete version of opabresex2 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabresex2d.1 | |- ( ( ph /\ x ( W ` G ) y ) -> ps ) | |
| opabresex2d.2 | |- ( ph -> { <. x , y >. | ps } e. V ) | ||
| Assertion | opabresex2d | |- ( ph -> { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opabresex2d.1 | |- ( ( ph /\ x ( W ` G ) y ) -> ps ) | |
| 2 | opabresex2d.2 |  |-  ( ph -> { <. x , y >. | ps } e. V ) | |
| 3 | 1 | ex | |- ( ph -> ( x ( W ` G ) y -> ps ) ) | 
| 4 | 3 | alrimivv | |- ( ph -> A. x A. y ( x ( W ` G ) y -> ps ) ) | 
| 5 | opabbrex |  |-  ( ( A. x A. y ( x ( W ` G ) y -> ps ) /\ { <. x , y >. | ps } e. V ) -> { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V ) | |
| 6 | 4 2 5 | syl2anc |  |-  ( ph -> { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V ) |