Metamath Proof Explorer


Theorem opabresex2d

Description: Restrictions of a collection of ordered pairs of related elements are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresex2d.1
|- ( ( ph /\ x ( W ` G ) y ) -> ps )
opabresex2d.2
|- ( ph -> { <. x , y >. | ps } e. V )
Assertion opabresex2d
|- ( ph -> { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V )

Proof

Step Hyp Ref Expression
1 opabresex2d.1
 |-  ( ( ph /\ x ( W ` G ) y ) -> ps )
2 opabresex2d.2
 |-  ( ph -> { <. x , y >. | ps } e. V )
3 1 ex
 |-  ( ph -> ( x ( W ` G ) y -> ps ) )
4 3 alrimivv
 |-  ( ph -> A. x A. y ( x ( W ` G ) y -> ps ) )
5 opabbrex
 |-  ( ( A. x A. y ( x ( W ` G ) y -> ps ) /\ { <. x , y >. | ps } e. V ) -> { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V )
6 4 2 5 syl2anc
 |-  ( ph -> { <. x , y >. | ( x ( W ` G ) y /\ th ) } e. _V )