Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | opabresid | |- ( _I |` A ) = { <. x , y >. | ( x e. A /\ y = x ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id | |- _I = { <. x , y >. | x = y } |
|
2 | equcom | |- ( x = y <-> y = x ) |
|
3 | 2 | opabbii | |- { <. x , y >. | x = y } = { <. x , y >. | y = x } |
4 | 1 3 | eqtri | |- _I = { <. x , y >. | y = x } |
5 | 4 | reseq1i | |- ( _I |` A ) = ( { <. x , y >. | y = x } |` A ) |
6 | resopab | |- ( { <. x , y >. | y = x } |` A ) = { <. x , y >. | ( x e. A /\ y = x ) } |
|
7 | 5 6 | eqtri | |- ( _I |` A ) = { <. x , y >. | ( x e. A /\ y = x ) } |