Metamath Proof Explorer


Theorem opabresid

Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012)

Ref Expression
Assertion opabresid
|- ( _I |` A ) = { <. x , y >. | ( x e. A /\ y = x ) }

Proof

Step Hyp Ref Expression
1 df-id
 |-  _I = { <. x , y >. | x = y }
2 equcom
 |-  ( x = y <-> y = x )
3 2 opabbii
 |-  { <. x , y >. | x = y } = { <. x , y >. | y = x }
4 1 3 eqtri
 |-  _I = { <. x , y >. | y = x }
5 4 reseq1i
 |-  ( _I |` A ) = ( { <. x , y >. | y = x } |` A )
6 resopab
 |-  ( { <. x , y >. | y = x } |` A ) = { <. x , y >. | ( x e. A /\ y = x ) }
7 5 6 eqtri
 |-  ( _I |` A ) = { <. x , y >. | ( x e. A /\ y = x ) }