Metamath Proof Explorer


Theorem opabresidOLD

Description: Obsolete version of opabresid as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion opabresidOLD
|- { <. x , y >. | ( x e. A /\ y = x ) } = ( _I |` A )

Proof

Step Hyp Ref Expression
1 resopab
 |-  ( { <. x , y >. | y = x } |` A ) = { <. x , y >. | ( x e. A /\ y = x ) }
2 equcom
 |-  ( y = x <-> x = y )
3 2 opabbii
 |-  { <. x , y >. | y = x } = { <. x , y >. | x = y }
4 df-id
 |-  _I = { <. x , y >. | x = y }
5 3 4 eqtr4i
 |-  { <. x , y >. | y = x } = _I
6 5 reseq1i
 |-  ( { <. x , y >. | y = x } |` A ) = ( _I |` A )
7 1 6 eqtr3i
 |-  { <. x , y >. | ( x e. A /\ y = x ) } = ( _I |` A )