Description: Obsolete version of opabresid as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | opabresidOLD | |- { <. x , y >. | ( x e. A /\ y = x ) } = ( _I |` A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab | |- ( { <. x , y >. | y = x } |` A ) = { <. x , y >. | ( x e. A /\ y = x ) } |
|
2 | equcom | |- ( y = x <-> x = y ) |
|
3 | 2 | opabbii | |- { <. x , y >. | y = x } = { <. x , y >. | x = y } |
4 | df-id | |- _I = { <. x , y >. | x = y } |
|
5 | 3 4 | eqtr4i | |- { <. x , y >. | y = x } = _I |
6 | 5 | reseq1i | |- ( { <. x , y >. | y = x } |` A ) = ( _I |` A ) |
7 | 1 6 | eqtr3i | |- { <. x , y >. | ( x e. A /\ y = x ) } = ( _I |` A ) |