| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opabssxpd.x |
|- ( ( ph /\ ps ) -> x e. A ) |
| 2 |
|
opabssxpd.y |
|- ( ( ph /\ ps ) -> y e. B ) |
| 3 |
|
df-opab |
|- { <. x , y >. | ps } = { z | E. x E. y ( z = <. x , y >. /\ ps ) } |
| 4 |
|
simprl |
|- ( ( ph /\ ( z = <. x , y >. /\ ps ) ) -> z = <. x , y >. ) |
| 5 |
1 2
|
opelxpd |
|- ( ( ph /\ ps ) -> <. x , y >. e. ( A X. B ) ) |
| 6 |
5
|
adantrl |
|- ( ( ph /\ ( z = <. x , y >. /\ ps ) ) -> <. x , y >. e. ( A X. B ) ) |
| 7 |
4 6
|
eqeltrd |
|- ( ( ph /\ ( z = <. x , y >. /\ ps ) ) -> z e. ( A X. B ) ) |
| 8 |
7
|
ex |
|- ( ph -> ( ( z = <. x , y >. /\ ps ) -> z e. ( A X. B ) ) ) |
| 9 |
8
|
exlimdvv |
|- ( ph -> ( E. x E. y ( z = <. x , y >. /\ ps ) -> z e. ( A X. B ) ) ) |
| 10 |
9
|
abssdv |
|- ( ph -> { z | E. x E. y ( z = <. x , y >. /\ ps ) } C_ ( A X. B ) ) |
| 11 |
3 10
|
eqsstrid |
|- ( ph -> { <. x , y >. | ps } C_ ( A X. B ) ) |