Step |
Hyp |
Ref |
Expression |
1 |
|
opbrop.1 |
|- ( ( ( z = A /\ w = B ) /\ ( v = C /\ u = D ) ) -> ( ph <-> ps ) ) |
2 |
|
opbrop.2 |
|- R = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) } |
3 |
|
opelxpi |
|- ( ( A e. S /\ B e. S ) -> <. A , B >. e. ( S X. S ) ) |
4 |
|
opelxpi |
|- ( ( C e. S /\ D e. S ) -> <. C , D >. e. ( S X. S ) ) |
5 |
3 4
|
anim12i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) ) |
6 |
|
opex |
|- <. A , B >. e. _V |
7 |
|
opex |
|- <. C , D >. e. _V |
8 |
|
eleq1 |
|- ( x = <. A , B >. -> ( x e. ( S X. S ) <-> <. A , B >. e. ( S X. S ) ) ) |
9 |
8
|
anbi1d |
|- ( x = <. A , B >. -> ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) <-> ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) ) ) |
10 |
|
eqeq1 |
|- ( x = <. A , B >. -> ( x = <. z , w >. <-> <. A , B >. = <. z , w >. ) ) |
11 |
10
|
anbi1d |
|- ( x = <. A , B >. -> ( ( x = <. z , w >. /\ y = <. v , u >. ) <-> ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) ) ) |
12 |
11
|
anbi1d |
|- ( x = <. A , B >. -> ( ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) |
13 |
12
|
4exbidv |
|- ( x = <. A , B >. -> ( E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) |
14 |
9 13
|
anbi12d |
|- ( x = <. A , B >. -> ( ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) ) |
15 |
|
eleq1 |
|- ( y = <. C , D >. -> ( y e. ( S X. S ) <-> <. C , D >. e. ( S X. S ) ) ) |
16 |
15
|
anbi2d |
|- ( y = <. C , D >. -> ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) <-> ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) ) ) |
17 |
|
eqeq1 |
|- ( y = <. C , D >. -> ( y = <. v , u >. <-> <. C , D >. = <. v , u >. ) ) |
18 |
17
|
anbi2d |
|- ( y = <. C , D >. -> ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) <-> ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) ) ) |
19 |
18
|
anbi1d |
|- ( y = <. C , D >. -> ( ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) |
20 |
19
|
4exbidv |
|- ( y = <. C , D >. -> ( E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) |
21 |
16 20
|
anbi12d |
|- ( y = <. C , D >. -> ( ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) ) |
22 |
6 7 14 21 2
|
brab |
|- ( <. A , B >. R <. C , D >. <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) |
23 |
1
|
copsex4g |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) <-> ps ) ) |
24 |
23
|
anbi2d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ ps ) ) ) |
25 |
22 24
|
syl5bb |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ ps ) ) ) |
26 |
5 25
|
mpbirand |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ps ) ) |