Metamath Proof Explorer


Theorem opbrop

Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995)

Ref Expression
Hypotheses opbrop.1
|- ( ( ( z = A /\ w = B ) /\ ( v = C /\ u = D ) ) -> ( ph <-> ps ) )
opbrop.2
|- R = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) }
Assertion opbrop
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ps ) )

Proof

Step Hyp Ref Expression
1 opbrop.1
 |-  ( ( ( z = A /\ w = B ) /\ ( v = C /\ u = D ) ) -> ( ph <-> ps ) )
2 opbrop.2
 |-  R = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) }
3 opelxpi
 |-  ( ( A e. S /\ B e. S ) -> <. A , B >. e. ( S X. S ) )
4 opelxpi
 |-  ( ( C e. S /\ D e. S ) -> <. C , D >. e. ( S X. S ) )
5 3 4 anim12i
 |-  ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) )
6 opex
 |-  <. A , B >. e. _V
7 opex
 |-  <. C , D >. e. _V
8 eleq1
 |-  ( x = <. A , B >. -> ( x e. ( S X. S ) <-> <. A , B >. e. ( S X. S ) ) )
9 8 anbi1d
 |-  ( x = <. A , B >. -> ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) <-> ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) ) )
10 eqeq1
 |-  ( x = <. A , B >. -> ( x = <. z , w >. <-> <. A , B >. = <. z , w >. ) )
11 10 anbi1d
 |-  ( x = <. A , B >. -> ( ( x = <. z , w >. /\ y = <. v , u >. ) <-> ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) ) )
12 11 anbi1d
 |-  ( x = <. A , B >. -> ( ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) )
13 12 4exbidv
 |-  ( x = <. A , B >. -> ( E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) )
14 9 13 anbi12d
 |-  ( x = <. A , B >. -> ( ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) )
15 eleq1
 |-  ( y = <. C , D >. -> ( y e. ( S X. S ) <-> <. C , D >. e. ( S X. S ) ) )
16 15 anbi2d
 |-  ( y = <. C , D >. -> ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) <-> ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) ) )
17 eqeq1
 |-  ( y = <. C , D >. -> ( y = <. v , u >. <-> <. C , D >. = <. v , u >. ) )
18 17 anbi2d
 |-  ( y = <. C , D >. -> ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) <-> ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) ) )
19 18 anbi1d
 |-  ( y = <. C , D >. -> ( ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) )
20 19 4exbidv
 |-  ( y = <. C , D >. -> ( E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) )
21 16 20 anbi12d
 |-  ( y = <. C , D >. -> ( ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) )
22 6 7 14 21 2 brab
 |-  ( <. A , B >. R <. C , D >. <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) )
23 1 copsex4g
 |-  ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) <-> ps ) )
24 23 anbi2d
 |-  ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ ps ) ) )
25 22 24 bitrid
 |-  ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ ps ) ) )
26 5 25 mpbirand
 |-  ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ps ) )