| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opco1.exa |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | opco1.exb |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | df-ov |  |-  ( A ( F o. 1st ) B ) = ( ( F o. 1st ) ` <. A , B >. ) | 
						
							| 4 | 3 | a1i |  |-  ( ph -> ( A ( F o. 1st ) B ) = ( ( F o. 1st ) ` <. A , B >. ) ) | 
						
							| 5 |  | fo1st |  |-  1st : _V -onto-> _V | 
						
							| 6 |  | fof |  |-  ( 1st : _V -onto-> _V -> 1st : _V --> _V ) | 
						
							| 7 | 5 6 | mp1i |  |-  ( ph -> 1st : _V --> _V ) | 
						
							| 8 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ph -> <. A , B >. e. _V ) | 
						
							| 10 | 7 9 | fvco3d |  |-  ( ph -> ( ( F o. 1st ) ` <. A , B >. ) = ( F ` ( 1st ` <. A , B >. ) ) ) | 
						
							| 11 |  | op1stg |  |-  ( ( A e. V /\ B e. W ) -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 12 | 1 2 11 | syl2anc |  |-  ( ph -> ( 1st ` <. A , B >. ) = A ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( F ` ( 1st ` <. A , B >. ) ) = ( F ` A ) ) | 
						
							| 14 | 4 10 13 | 3eqtrd |  |-  ( ph -> ( A ( F o. 1st ) B ) = ( F ` A ) ) |