Metamath Proof Explorer


Theorem opco1i

Description: Inference form of opco1 . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses opco1i.1
|- B e. _V
opco1i.2
|- C e. _V
Assertion opco1i
|- ( B ( F o. 1st ) C ) = ( F ` B )

Proof

Step Hyp Ref Expression
1 opco1i.1
 |-  B e. _V
2 opco1i.2
 |-  C e. _V
3 1 a1i
 |-  ( T. -> B e. _V )
4 2 a1i
 |-  ( T. -> C e. _V )
5 3 4 opco1
 |-  ( T. -> ( B ( F o. 1st ) C ) = ( F ` B ) )
6 5 mptru
 |-  ( B ( F o. 1st ) C ) = ( F ` B )