Step |
Hyp |
Ref |
Expression |
1 |
|
opco1.exa |
|- ( ph -> A e. V ) |
2 |
|
opco1.exb |
|- ( ph -> B e. W ) |
3 |
|
df-ov |
|- ( A ( F o. 2nd ) B ) = ( ( F o. 2nd ) ` <. A , B >. ) |
4 |
3
|
a1i |
|- ( ph -> ( A ( F o. 2nd ) B ) = ( ( F o. 2nd ) ` <. A , B >. ) ) |
5 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
6 |
|
fof |
|- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
7 |
5 6
|
mp1i |
|- ( ph -> 2nd : _V --> _V ) |
8 |
|
opex |
|- <. A , B >. e. _V |
9 |
8
|
a1i |
|- ( ph -> <. A , B >. e. _V ) |
10 |
7 9
|
fvco3d |
|- ( ph -> ( ( F o. 2nd ) ` <. A , B >. ) = ( F ` ( 2nd ` <. A , B >. ) ) ) |
11 |
|
op2ndg |
|- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |
12 |
1 2 11
|
syl2anc |
|- ( ph -> ( 2nd ` <. A , B >. ) = B ) |
13 |
12
|
fveq2d |
|- ( ph -> ( F ` ( 2nd ` <. A , B >. ) ) = ( F ` B ) ) |
14 |
4 10 13
|
3eqtrd |
|- ( ph -> ( A ( F o. 2nd ) B ) = ( F ` B ) ) |