Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opcom.1 | |- A e. _V |
|
opcom.2 | |- B e. _V |
||
Assertion | opcom | |- ( <. A , B >. = <. B , A >. <-> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcom.1 | |- A e. _V |
|
2 | opcom.2 | |- B e. _V |
|
3 | 1 2 | opth | |- ( <. A , B >. = <. B , A >. <-> ( A = B /\ B = A ) ) |
4 | eqcom | |- ( B = A <-> A = B ) |
|
5 | 4 | anbi2i | |- ( ( A = B /\ B = A ) <-> ( A = B /\ A = B ) ) |
6 | anidm | |- ( ( A = B /\ A = B ) <-> A = B ) |
|
7 | 3 5 6 | 3bitri | |- ( <. A , B >. = <. B , A >. <-> A = B ) |