Metamath Proof Explorer


Theorem opcom

Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009)

Ref Expression
Hypotheses opcom.1
|- A e. _V
opcom.2
|- B e. _V
Assertion opcom
|- ( <. A , B >. = <. B , A >. <-> A = B )

Proof

Step Hyp Ref Expression
1 opcom.1
 |-  A e. _V
2 opcom.2
 |-  B e. _V
3 1 2 opth
 |-  ( <. A , B >. = <. B , A >. <-> ( A = B /\ B = A ) )
4 eqcom
 |-  ( B = A <-> A = B )
5 4 anbi2i
 |-  ( ( A = B /\ B = A ) <-> ( A = B /\ A = B ) )
6 anidm
 |-  ( ( A = B /\ A = B ) <-> A = B )
7 3 5 6 3bitri
 |-  ( <. A , B >. = <. B , A >. <-> A = B )