Description: Orthocomplement contraposition law. ( negcon1 analog.) (Contributed by NM, 24-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoccl.b | |- B = ( Base ` K ) |
|
| opoccl.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | opcon1b | |- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( ( ._|_ ` X ) = Y <-> ( ._|_ ` Y ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | |- B = ( Base ` K ) |
|
| 2 | opoccl.o | |- ._|_ = ( oc ` K ) |
|
| 3 | 1 2 | opcon2b | |- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( X = ( ._|_ ` Y ) <-> Y = ( ._|_ ` X ) ) ) |
| 4 | eqcom | |- ( ( ._|_ ` Y ) = X <-> X = ( ._|_ ` Y ) ) |
|
| 5 | eqcom | |- ( ( ._|_ ` X ) = Y <-> Y = ( ._|_ ` X ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( ( ._|_ ` Y ) = X <-> ( ._|_ ` X ) = Y ) ) |
| 7 | 6 | bicomd | |- ( ( K e. OP /\ X e. B /\ Y e. B ) -> ( ( ._|_ ` X ) = Y <-> ( ._|_ ` Y ) = X ) ) |