Metamath Proof Explorer


Theorem opelcnv

Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995)

Ref Expression
Hypotheses opelcnv.1
|- A e. _V
opelcnv.2
|- B e. _V
Assertion opelcnv
|- ( <. A , B >. e. `' R <-> <. B , A >. e. R )

Proof

Step Hyp Ref Expression
1 opelcnv.1
 |-  A e. _V
2 opelcnv.2
 |-  B e. _V
3 opelcnvg
 |-  ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. e. `' R <-> <. B , A >. e. R ) )
4 1 2 3 mp2an
 |-  ( <. A , B >. e. `' R <-> <. B , A >. e. R )