Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelcnv.1 | |- A e. _V |
|
opelcnv.2 | |- B e. _V |
||
Assertion | opelcnv | |- ( <. A , B >. e. `' R <-> <. B , A >. e. R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | |- A e. _V |
|
2 | opelcnv.2 | |- B e. _V |
|
3 | opelcnvg | |- ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. e. `' R <-> <. B , A >. e. R ) ) |
|
4 | 1 2 3 | mp2an | |- ( <. A , B >. e. `' R <-> <. B , A >. e. R ) |