Metamath Proof Explorer


Theorem opelco

Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses opelco.1
|- A e. _V
opelco.2
|- B e. _V
Assertion opelco
|- ( <. A , B >. e. ( C o. D ) <-> E. x ( A D x /\ x C B ) )

Proof

Step Hyp Ref Expression
1 opelco.1
 |-  A e. _V
2 opelco.2
 |-  B e. _V
3 df-br
 |-  ( A ( C o. D ) B <-> <. A , B >. e. ( C o. D ) )
4 1 2 brco
 |-  ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) )
5 3 4 bitr3i
 |-  ( <. A , B >. e. ( C o. D ) <-> E. x ( A D x /\ x C B ) )