Metamath Proof Explorer


Theorem opeldm

Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995)

Ref Expression
Hypotheses opeldm.1
|- A e. _V
opeldm.2
|- B e. _V
Assertion opeldm
|- ( <. A , B >. e. C -> A e. dom C )

Proof

Step Hyp Ref Expression
1 opeldm.1
 |-  A e. _V
2 opeldm.2
 |-  B e. _V
3 opeq2
 |-  ( y = B -> <. A , y >. = <. A , B >. )
4 3 eleq1d
 |-  ( y = B -> ( <. A , y >. e. C <-> <. A , B >. e. C ) )
5 2 4 spcev
 |-  ( <. A , B >. e. C -> E. y <. A , y >. e. C )
6 1 eldm2
 |-  ( A e. dom C <-> E. y <. A , y >. e. C )
7 5 6 sylibr
 |-  ( <. A , B >. e. C -> A e. dom C )