Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opeldm.1 | |- A e. _V |
|
opeldm.2 | |- B e. _V |
||
Assertion | opeldm | |- ( <. A , B >. e. C -> A e. dom C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.1 | |- A e. _V |
|
2 | opeldm.2 | |- B e. _V |
|
3 | opeq2 | |- ( y = B -> <. A , y >. = <. A , B >. ) |
|
4 | 3 | eleq1d | |- ( y = B -> ( <. A , y >. e. C <-> <. A , B >. e. C ) ) |
5 | 2 4 | spcev | |- ( <. A , B >. e. C -> E. y <. A , y >. e. C ) |
6 | 1 | eldm2 | |- ( A e. dom C <-> E. y <. A , y >. e. C ) |
7 | 5 6 | sylibr | |- ( <. A , B >. e. C -> A e. dom C ) |