Metamath Proof Explorer


Theorem opeldmd

Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm . (Contributed by AV, 11-Mar-2021)

Ref Expression
Hypotheses opeldmd.1
|- ( ph -> A e. V )
opeldmd.2
|- ( ph -> B e. W )
Assertion opeldmd
|- ( ph -> ( <. A , B >. e. C -> A e. dom C ) )

Proof

Step Hyp Ref Expression
1 opeldmd.1
 |-  ( ph -> A e. V )
2 opeldmd.2
 |-  ( ph -> B e. W )
3 opeq2
 |-  ( y = B -> <. A , y >. = <. A , B >. )
4 3 eleq1d
 |-  ( y = B -> ( <. A , y >. e. C <-> <. A , B >. e. C ) )
5 4 spcegv
 |-  ( B e. W -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) )
6 2 5 syl
 |-  ( ph -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) )
7 eldm2g
 |-  ( A e. V -> ( A e. dom C <-> E. y <. A , y >. e. C ) )
8 1 7 syl
 |-  ( ph -> ( A e. dom C <-> E. y <. A , y >. e. C ) )
9 6 8 sylibrd
 |-  ( ph -> ( <. A , B >. e. C -> A e. dom C ) )