| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opeldmd.1 |
|- ( ph -> A e. V ) |
| 2 |
|
opeldmd.2 |
|- ( ph -> B e. W ) |
| 3 |
|
opeq2 |
|- ( y = B -> <. A , y >. = <. A , B >. ) |
| 4 |
3
|
eleq1d |
|- ( y = B -> ( <. A , y >. e. C <-> <. A , B >. e. C ) ) |
| 5 |
4
|
spcegv |
|- ( B e. W -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) ) |
| 6 |
2 5
|
syl |
|- ( ph -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) ) |
| 7 |
|
eldm2g |
|- ( A e. V -> ( A e. dom C <-> E. y <. A , y >. e. C ) ) |
| 8 |
1 7
|
syl |
|- ( ph -> ( A e. dom C <-> E. y <. A , y >. e. C ) ) |
| 9 |
6 8
|
sylibrd |
|- ( ph -> ( <. A , B >. e. C -> A e. dom C ) ) |