Metamath Proof Explorer


Theorem opelf

Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelf
|- ( ( F : A --> B /\ <. C , D >. e. F ) -> ( C e. A /\ D e. B ) )

Proof

Step Hyp Ref Expression
1 fssxp
 |-  ( F : A --> B -> F C_ ( A X. B ) )
2 1 sseld
 |-  ( F : A --> B -> ( <. C , D >. e. F -> <. C , D >. e. ( A X. B ) ) )
3 opelxp
 |-  ( <. C , D >. e. ( A X. B ) <-> ( C e. A /\ D e. B ) )
4 2 3 syl6ib
 |-  ( F : A --> B -> ( <. C , D >. e. F -> ( C e. A /\ D e. B ) ) )
5 4 imp
 |-  ( ( F : A --> B /\ <. C , D >. e. F ) -> ( C e. A /\ D e. B ) )