Metamath Proof Explorer


Theorem opelinxp

Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019)

Ref Expression
Assertion opelinxp
|- ( <. C , D >. e. ( R i^i ( A X. B ) ) <-> ( ( C e. A /\ D e. B ) /\ <. C , D >. e. R ) )

Proof

Step Hyp Ref Expression
1 brinxp2
 |-  ( C ( R i^i ( A X. B ) ) D <-> ( ( C e. A /\ D e. B ) /\ C R D ) )
2 df-br
 |-  ( C ( R i^i ( A X. B ) ) D <-> <. C , D >. e. ( R i^i ( A X. B ) ) )
3 df-br
 |-  ( C R D <-> <. C , D >. e. R )
4 3 anbi2i
 |-  ( ( ( C e. A /\ D e. B ) /\ C R D ) <-> ( ( C e. A /\ D e. B ) /\ <. C , D >. e. R ) )
5 1 2 4 3bitr3i
 |-  ( <. C , D >. e. ( R i^i ( A X. B ) ) <-> ( ( C e. A /\ D e. B ) /\ <. C , D >. e. R ) )