Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007) (Revised by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopab2.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| opelopab2.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | opelopab2 | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab2.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | opelopab2.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | 1 2 | sylan9bb | |- ( ( x = A /\ y = B ) -> ( ph <-> ch ) ) |
| 4 | 3 | opelopab2a | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ch ) ) |