Step |
Hyp |
Ref |
Expression |
1 |
|
elopab |
|- ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( <. u , v >. = <. x , y >. /\ ph ) ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
opth |
|- ( <. x , y >. = <. u , v >. <-> ( x = u /\ y = v ) ) |
5 |
|
eqcom |
|- ( <. x , y >. = <. u , v >. <-> <. u , v >. = <. x , y >. ) |
6 |
4 5
|
bitr3i |
|- ( ( x = u /\ y = v ) <-> <. u , v >. = <. x , y >. ) |
7 |
6
|
anbi1i |
|- ( ( ( x = u /\ y = v ) /\ ph ) <-> ( <. u , v >. = <. x , y >. /\ ph ) ) |
8 |
7
|
2exbii |
|- ( E. x E. y ( ( x = u /\ y = v ) /\ ph ) <-> E. x E. y ( <. u , v >. = <. x , y >. /\ ph ) ) |
9 |
1 8
|
bitr4i |
|- ( <. u , v >. e. { <. x , y >. | ph } <-> E. x E. y ( ( x = u /\ y = v ) /\ ph ) ) |