| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opelopabf.x |
|- F/ x ps |
| 2 |
|
opelopabf.y |
|- F/ y ch |
| 3 |
|
opelopabf.1 |
|- A e. _V |
| 4 |
|
opelopabf.2 |
|- B e. _V |
| 5 |
|
opelopabf.3 |
|- ( x = A -> ( ph <-> ps ) ) |
| 6 |
|
opelopabf.4 |
|- ( y = B -> ( ps <-> ch ) ) |
| 7 |
|
opelopabsb |
|- ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) |
| 8 |
|
nfcv |
|- F/_ x B |
| 9 |
8 1
|
nfsbcw |
|- F/ x [. B / y ]. ps |
| 10 |
5
|
sbcbidv |
|- ( x = A -> ( [. B / y ]. ph <-> [. B / y ]. ps ) ) |
| 11 |
9 10
|
sbciegf |
|- ( A e. _V -> ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. ps ) ) |
| 12 |
3 11
|
ax-mp |
|- ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. ps ) |
| 13 |
2 6
|
sbciegf |
|- ( B e. _V -> ( [. B / y ]. ps <-> ch ) ) |
| 14 |
4 13
|
ax-mp |
|- ( [. B / y ]. ps <-> ch ) |
| 15 |
7 12 14
|
3bitri |
|- ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) |