Metamath Proof Explorer


Theorem opelopabga

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypothesis opelopabga.1
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
Assertion opelopabga
|- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ps ) )

Proof

Step Hyp Ref Expression
1 opelopabga.1
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
2 elopab
 |-  ( <. A , B >. e. { <. x , y >. | ph } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) )
3 1 copsex2g
 |-  ( ( A e. V /\ B e. W ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )
4 2 3 bitrid
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ps ) )