Step |
Hyp |
Ref |
Expression |
1 |
|
opelopabgf.x |
|- F/ x ps |
2 |
|
opelopabgf.y |
|- F/ y ch |
3 |
|
opelopabgf.1 |
|- ( x = A -> ( ph <-> ps ) ) |
4 |
|
opelopabgf.2 |
|- ( y = B -> ( ps <-> ch ) ) |
5 |
|
opelopabsb |
|- ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) |
6 |
|
nfcv |
|- F/_ x B |
7 |
6 1
|
nfsbcw |
|- F/ x [. B / y ]. ps |
8 |
3
|
sbcbidv |
|- ( x = A -> ( [. B / y ]. ph <-> [. B / y ]. ps ) ) |
9 |
7 8
|
sbciegf |
|- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. ps ) ) |
10 |
2 4
|
sbciegf |
|- ( B e. W -> ( [. B / y ]. ps <-> ch ) ) |
11 |
9 10
|
sylan9bb |
|- ( ( A e. V /\ B e. W ) -> ( [. A / x ]. [. B / y ]. ph <-> ch ) ) |
12 |
5 11
|
bitrid |
|- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) ) |