Description: Ordered pair membership in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opelresi.1 | |- C e. _V |
|
| Assertion | opelresi | |- ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | |- C e. _V |
|
| 2 | opelres | |- ( C e. _V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) |