Description: Ordered pair membership in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opelresi.1 | |- C e. _V |
|
Assertion | opelresi | |- ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | |- C e. _V |
|
2 | opelres | |- ( C e. _V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) ) |
|
3 | 1 2 | ax-mp | |- ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) |