Metamath Proof Explorer


Theorem opelstrbas

Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021)

Ref Expression
Hypotheses opelstrbas.s
|- ( ph -> S Struct X )
opelstrbas.v
|- ( ph -> V e. Y )
opelstrbas.b
|- ( ph -> <. ( Base ` ndx ) , V >. e. S )
Assertion opelstrbas
|- ( ph -> V = ( Base ` S ) )

Proof

Step Hyp Ref Expression
1 opelstrbas.s
 |-  ( ph -> S Struct X )
2 opelstrbas.v
 |-  ( ph -> V e. Y )
3 opelstrbas.b
 |-  ( ph -> <. ( Base ` ndx ) , V >. e. S )
4 baseid
 |-  Base = Slot ( Base ` ndx )
5 structex
 |-  ( S Struct X -> S e. _V )
6 1 5 syl
 |-  ( ph -> S e. _V )
7 structfung
 |-  ( S Struct X -> Fun `' `' S )
8 1 7 syl
 |-  ( ph -> Fun `' `' S )
9 4 6 8 3 2 strfv2d
 |-  ( ph -> V = ( Base ` S ) )